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Abstract
Malaria remains an important public health issue in Benin, with Background. 

 and   being the predominantAnopheles gambiae s.l. Anopheles funestus s.s
vectors. This study was designed to generate information on An. funestus
distribution, molecular speciation,   infection rate and insecticidePlasmodium
susceptibility status across Benin.  Mosquito samples were collectedMethods. 
from December 2014 to January 2016 in 46 localities in Benin. These samples
were mapped and  collected were speciated to the molecular level.An. funestus 

 infection rate was determined using a Taqman assay andPlasmodium
susceptibility to insecticides was assessed using the WHO guidelines. The
genotyping of the L119F- Gste2 mutation was also carried out.   Results. An.

 was found in 8 out of the 46 localities surveyed with a high presence infunestus
Tanongou (wet Sudanese ecological zone), Kpome, Doukonta and Pahou
(sub-equatorial ecological zone). Molecular identifications revealed that only 

   was present in southern Benin, whereas in TanongouAn. funestus s.s
(northern Benin)   and   were found in sympatry atAn. funestus s.s. An. leesoni
proportions of 77.7% and 22.3% respectively.   infection rate of Plasmodium An.

 was higher in southern Benin at a range of 13 to 18% compared tofunestus
5.6% recorded in Tanongou. High DDT (8±0.5%) and permethrin (11±0.5%)
resistance were observed in Doukonta, Kpome and Pahou, contrasting with
relatively low resistance profiles: mortality-DDT=90±3.18% and
mortality-permethrin=100% in Tanongou. Genotyping analysis revealed  high
frequency  of the resistant 119F allele in the South (Kpome and Doukonta)
compared to the North (Tanongou).  The highDiscussion and Conclusion. 
presence of    in the South compared to the North  could be due toAn. funestus
favorable environmental and climatic conditions found in both regions. A

significant   infection rate was recorded across the country. A highPlasmodium
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significant   infection rate was recorded across the country. A highPlasmodium
resistance profile was recorded in the southern Benin; this raises the need for
further investigations on resistance selection factors.
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Background
Malaria remains a major public health challenge in Benin, with the 
most vulnerable populations being children less than five years and 
pregnant women1. It accounts for around 37% of hospital consul-
tations in the country2. Efforts to eradicate this disease in Africa 
have focused on treatment of diagnosed cases and preventive strate-
gies, which are mainly based on vector control, such as the use of 
insecticide treated nets, indoor residual spraying of insecticides and 
larviciding1.

In the past decade, vector control interventions have massively 
contributed to the significant decrease observed in the burden of 
malaria across Africa, notably in Benin3. To sustain such progress, 

            Amendments from Version 1

We did not remove any of the already published information, 
rather few insertions were made in the manuscript based of the 
second reviewer’s comments. Briefly, information inserted are as 
follows: 

Methods

Comment 1: I recommend the authors to give the different 
sequences of the primers used (P. ovale, vivax, malariae and 
falciparum) for Plasmodium infection rate detection.

Primers- Forward (F), PlasF (5’-
GCTTAGTTACGATTAATAGGAGTAGCTTG-3’) and reverse (R), 
PlasR (5’- GAAAATCTAAGAATTTCACCTCTGACA-3’).

Specific probes for plasmodium species detection: 
5’-TCTGAATACGAATGTC-3’ labelled with FAM and 5’-
CTGAATACAAATGCC-3’ labelled with HEX.

Insecticides susceptibility

Comment 2: I suggest the authors to develop this part by giving 
information about:

the number of ovipositing females: for Doukonta, 9 mosquitoes 
oviposited out of 15 while 75 oviposited out of 110 mosquitoes 
subjected to forced-egg laying technique.

The number of tested mosquitoes per molecules (DDT and 
permethrin) and the number of replicates: 100 mosquitoes were 
tested for each insecticide in 4 and 5 replicates in Doukonta and 
Tanongou respectively.

The origin of impregnated papers (from Vector Control 
Research Unit, University Sains Malaysia, Penang, Malaysia??): 
Impregnated papers were purchased from Vector Biology 
Department, Liverpool School of Tropical Medicine, UK.

Test and insectary conditions (relative humidity and temperature): 
Insectary and test room were at a temperature of 25–27°C and 
relative humidity of 80±5%.

Data analysis and Results

Comments 3 & 4: Statistical tests used: Fisher’s exact test was 
used to determine the significant levels of Plasmodium infection 
rates and L119F-GSTe2 mutation detected.

Figures and Tables:

Comment 5: For clarity please add the collection dates in the 
titles, specify what f(S) and f(R) represent in the title of Figure 4. 
The data in Figure 3 represent mortality rate? means? medians? 
with 95% confidence intervals? Please make clear: These 
comments have been addressed in this version of the article.

See referee reports

REVISED
national control programs need better knowledge on key malaria 
vectors nationwide, including their geographical distribution, sus-
ceptibility profile to insecticides and contribution to malaria trans-
mission, as well as understanding the vectorial complexity of these 
species. Such information already exists for Anopheles gambiae 
across Benin2,4,5, but this is not the case for the other major vec-
tor An. funestus, for which only limited information is available, 
mainly from few coastal populations6,7.

An. funestus Giles is one of the key malaria-transmitting mos-
quitoes in Africa. The vectorial capacity of this mosquito vector 
is close to and could exceed that of An. gambiae, the most docu-
mented malaria vector in some countries8. An. funestus Giles group 
is made up of nine species distributed across sub-Saharan Africa9,10. 
These nine species of the An. funestus group are as follows:  
An. funestus Giles (s.s), An. vaneedeni Gillies and Coetzee,  
An. leesoni Evans, An. parensis Gillies, An. rivulorum Leeson,  
An. fuscivenosus Leeson, An. brucei Service, An. aruni Sobti  
and An. confusus Evans and Leeson. These species are not easily 
distinguishable using morphological keys9,10.

The vectorial capacity of members of the An. funestus group  
varies significantly, with most species being zoophilic, except  
An. funestus s.s., which is the main Plasmodium vector in this group. 
Indeed high infection rates have been reported for An. funestus s.s., 
such as 22%11 and 27%12 documented in South Africa, 11% in  
Tanzania13, 50% in Burkina Faso14 and 18% in Benin7. However, 
other members of the group, such as An. rivulorum has a high 
anthropophilic rate of 40% (42/106) in the southern region of 
Nigeria15, but presents a low contribution to malaria transmission 
in Tanzania16. As for An. vaneedeni, this species could be either 
exophilic or anthrophilic, but can easily carry the Plasmodium  
parasite under laboratory conditions17, whereas An. parensis 
is endophilic, but does not carry the malaria parasite15,18,19. In 
most parts of Africa, An. funestus s.s. and other members of the  
An. funestus group live in sympatry9,15,18, and if appropriate iden-
tification is not made this could lead to wrong vectorial characteri-
zation of An. funestus s.s. This relevant information on An. funestus  
in Benin has been documented in some parts of the southern coastal 
localities of Ouidah, Kpomasse, Tori and Pahou6,20, but no extensive 
study has so far been carried out in a North-South Benin transect  
to determine the extent of the distribution of this species in the 
country and its contribution to malaria transmission.

The resistance profile of An. funestus s.s has only been explored for 
some coastal populations with a multiple resistance to pyrethroids, 
DDT and carbamates reported in the locations of Pahou6 and 
Kpome7. It remains to be established whether such resistance is dis-
tributed nationwide or not. The resistance of An. funestus species to 
several insecticides used in public health has been well documented 
in many other African countries, and for some the resistance pattern 
and underlying resistance mechanisms have been the same nation-
wide, for example in Uganda19, whereas variations have also been 
observed, such as in Malawi21. Across Africa, the resistance profile 
of An. funestus s.s. significantly varies with resistance to pyrethroids 
and carbamates observed in southern Africa (Mozambique, Malawi 
and South-Africa)22–25, whereas East African (Uganda and Kenya) 
populations of An. funestus are resistant to pyrethroids and DDT, 
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but susceptible to carbamates19,26. Central (Cameroon)27,28 and West 
African (Ghana, Benin) populations are resistant to pyrethroid, 
organochlorines and carbamates6,29. In Benin, An. funestus s.s.  
population in the coastal locality of Pahou is resistant to pyre-
throids, carbamates and is highly resistant to DDT6. Furthermore, 
it was demonstrated that the GSTe2 gene with the L119F mutation 
accounts for its capacity to metabolize DDT30.

This study aims to generate information on the distribution,  
Plasmodium infection rate and resistance status of An. funestus in 
the South-North transect of Benin to help control programs to have 
a better assessment of the contribution of this species nationwide 
and how best to control it.

Methods
Ethical statement
No ethical permit was required for this study. However, there was 
a focus group discussion with the community and household heads 
where verbal consent was obtained for mosquito collections in the 
community after the study aims and objectives were explained. 
During this research study, we did not perform insecticide spray-
ing, night collections, or human bait for mosquito collection. All 
mosquitoes were sampled during daytime using electrical aspira-
tors activated with batteries.

Study sites and mosquito collection
Study site description. Benin lies between the Equator and the 
Tropic of Cancer at latitudes ranging from 6°30′ N to 12°30′ N and 
longitude from 1° E to 3°40′ E. This country shares boundaries with 
Togo in the West, Burkina Faso and Niger in the North, and Nigeria 
in the East. Four main climatic zones are found in the country. The 
North Sudanese climatic region, which is characterized by one long 
dry season and a short rainy season, with low relative humidity and 
rainfall that is the lowest in the country (800 to 1000 mm per year). 
Large water bodies are found in this region and temperatures are 
the highest, and could reach 45°C during dry seasons. The second 
region is the wet Sudanese climatic zone (Atacorian). This climatic 
region is dominated by hills of up to 800 m of altitude and several 
small water bodies, which makes the region colder. Annual rainfall 
ranges from 1200 to 1300 mm per year, the vegetation is partially 
of wet savanna type, the temperature in this part of the country is 
the lowest. The third region is the sub-Sudanese climatic region 
that covers the center of the country and part of the South. This 
climatic region has one long rainy season and one short dry season.  
Rainfall is between 900 and 1200 mm, the region is less hilly and 
the vegetation is of wet savanna type. The fourth region is the  
southern sub-equatorial climatic region that spans the southern 
part of the country and extends up to coastal areas of Benin. This 
region is made up of two rainy seasons and two dry seasons. The 
relative humidity is high, temperatures are relatively low and the  
vegetation is a mosaic of coastal, wetlands, forest, and wet  
savanna type. Several water bodies join together in this part of the 
country before being channeled into the sea (Figure 1).

Mosquito sampling. From December 2014 to January 2016, indoor 
collections of adult female mosquito were made between 06 to 
10am in several localities along South-North transect of Benin 
using four electric aspirators. Mosquito collections were carried 

out in different localities and the GPS was used to determine the 
latitude and longitude for each sampled locality. Maps of surveyed 
sites and the distribution of An. funestus in Benin were developed 
using recorded latitudes and longitudes. For each surveyed locality, 
a minimum of 30 rooms were randomly selected for mosquito aspi-
rations. These rooms were selected in a way to cover the various 
ecologies found in each locality. At least three days were spent in 
each surveyed site but for localities where An. funestus were found, 
the number of days was extended to five days to obtain a good 
number of mosquitoes to be used for various analyses. Aspirated 
mosquitoes were identified morphologically9, counted and the total 
number for each species was recorded. All blood-fed and gravid  
An. funestus (F

0
) collected inside houses were taken to the IITA 

insectary in Cotonou (Benin), where they were kept in small cups 
until fully gravid. The forced egg laying technique described  
by Morgan et al.26 was then used to induce female An. funes-
tus to lay eggs. Egg batches and emerging larvae from the same 
female mosquito were reared together and later pooled with lar-
vae from other females, if these females were found belong-
ing to the same molecular species. The insectary condition 
was at a temperature and relative humidity of 25–27°C and 
80±5% respectively. Larvae were fed daily with Tetramin™ baby  
fish food and the water of each larvae bowl was changed every  
two days to reduce the mortality. The F

1
 adults generated were  

randomly mixed in cages for subsequent experiments.

Seasonal estimation of mosquito densities per room
Mosquito densities per room (m/r) were estimated during four 
annual climatic seasons: rainy season, transition from rainy to dry 
season, dry season and transition from dry to rainy season. This 
estimation was based on the total number of An. funestus s.l. col-
lected during each season divided by the number of rooms sur-
veyed for mosquito collections in that season. Seasonal variations 
of An. funestus densities were determined per room in two locali-
ties in Benin: the locality of Tanongou in the North (wet Sudanese/ 
Atacorian climatic region) and the locality of Kpome in the South 
(subequatorial climatic region). Kpome and Tanongou were selected 
to represent the southern and northern regions respectively, due  
to the high density of An. funestus recorded in these localities.

PCR species identification
For each locality, female mosquito specimens that were morpholog-
ically identified as belonging to An. funestus group9 were subjected 
to DNA extractions using Qiagen DNeasy Kit followed by PCR 
for species identification, as described by Koekemoer et al.31.

Plasmodium infection rate of An. funestus populations from 
surveyed localities
The Plasmodium infection rate was determined using the TaqMan 
assay32. The reaction was performed in a 10µl final volume reac-
tion containing 1×SensiMix (Bioline), 800 nM of each primer: 
PlasF, 5’-GCTTAGTTACGATTAATAGGAGTAGCTTG-3’ and 
PlasR, 5’- GAAAATCTAAGAATTTCACCTCTGACA-3’, and 
200 nM of probes labeled with fluorophores: FAM (5’-TCT-
GAATACGAATGTC-3’) for detecting P. falciparum, and HEX (5’-
CTGAATACAAATGCC-3’) for P. ovale, P. vivax and P. malariae 
(P. ovm). P. falciparum sample and a mixture of P. ovale, P. vivax 
and P. malariae were used as positive controls. The real-time PCR  
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Figure 1. Surveyed localities between December 2014 and January 2016 in South-North of Benin.
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Agilent MX 3005 system was used for amplification with the fol-
lowing cycling conditions: 95°C for 10 minutes for denaturation, 
followed by 40 cycles of 15 seconds at 92°C and 1 minute at 60°C.

Insecticide susceptibility tests
Protocols and standard insecticide treated papers supplied by  
WHO33 were used to test for insecticide susceptibility of An.  
funestus from selected localities in the northern and southern 
where there was a consistent number of ovipositing females. These  
selected localities were Tanongou, northern Benin in the wet  
Sudanese climatic region (Atacorian region), and Doukonta, south-
ern Benin in the sub-equatorial climatic region. We assessed the 
susceptibility pattern of An. funestus s.s. from both localities to  
two insecticides of public health interest: pyrethroids type I per-
methrin (0.75%) used for insecticide treated nets (ITNs), and 
organochlorines DDT (4%) used in insecticide residual spraying  
(IRS). Exposed mosquitoes were fed with 10% sugar solution  
after 1hr of insecticide exposure after which mortalities were 
recorded 24hrs post exposure to insecticide treated papers33. The 
wild population of An. funestus was exposed to non-treated insec-
ticide papers as a control33 due to lack of susceptible strains of 
An. funestus, (An. funestus FANG). Prior to the experiment, the 
effectiveness of insecticide treated papers purchased from the Vec-
tor Biology Department, Liverpool School of Tropical Medicine 
(LSTM), UK was confirmed by exposing the susceptible strain 
An. gambiae kisumu to insecticide impregnated papers. Tests were 
conducted at a temperature and relative humidity of 25–27°C 
and 80±5% respectively. WHO criteria were used to determine  
resistance status with mortality between 98–100% indicating  
susceptibility, 90–97% potential resistance, and less than 90% 
resistance33.

Distribution of L119F-GSTe2 resistance allele using 
TaqMan assay
To assess the role of L119F mutation in DDT resistance, wild 
female An. funestus s.s. collected from each selected location were 
genotyped using the Taqman assay, as previously demonstrated30. 
The reaction was performed in a 10μl final volume containing  
1×SensiMix (Bioline, London, UK), 800 nM of each primer and 
200 nM of each probe using an Agilent MX3005P machine. The 
following cycling conditions were used: 10 min at 95°C, 40 cycles 
of 15s at 92°C and 1 min at 60°C. Two probes labelled with fluoro-
chromes FAM and HEX were used. The FAM was used to detect 
the mutant allele, while the HEX detected the wild type allele.

Data analysis
MedCalc easy-to-use online statistical software34 using the Fisher’s 
exact test was used to test for significant difference of Plasmodium 
infection rate and L119F-GSTe2 genotyping data in the South com-
pared to the North of Benin.

Results
Distribution of Anopheles funestus species in a South-North 
transect of Benin
Out of the 46 surveyed localities (Figure 1 and Supplementary  
Table 1) in this study, An. funestus species were found in eight 
localities, generally in sympatry with An. gambiae, and spread in 
two geo-climatic regions of Benin. In addition, most of the sites 

where An. funestus species were collected were found in the  
western part of the country (six out of eight localities with  
An. funestus; Figure 1).

A total of 3179 mosquitoes belonging to different species were 
caught during this survey. These mosquito populations from indoor 
collections were dominated by Anopheles spp. 82.89% (2635), 
followed by Culex spp. 14.90% (474), Mansonia spp. 1.38% (44)  
and Aedes spp. 0.81% (26) (Supplementary Table 1). Out of the 
morphologically identified Anopheles spp., An. gambiae s.l.  
constituted 79% (2083), followed by An. funestus s.l. with  
21% (552). No other Anopheles species was collected during the 
sampling period.

Distribution of An. funestus in various geo-climatic regions 
of Benin
An. funestus was not found in either the dry Sudanese climatic 
region (no An. funestus collected in the 11 surveyed localities),  
nor in the transition region between the Sudanese and the sub- 
equatorial climatic regions (the sub-Sudanese climatic region), 
where no An. funestus was found in the nine surveyed localities  
(Figure 1 and Supplementary Table 1). All An. funestus samples 
collected were either from the southern sub-equatorial region (An. 
funestus found in five out of the 17 surveyed localities) or the  
northern wet Sudanese climatic region of the Atacora (three locali-
ties with An. funestus out of nine surveyed). It is worth indicating  
that most sampled specimens of An. funestus were found in the 
western part of Benin (six localities out of eight with An. funes-
tus). Out of the 552 morphologically identified An. funestus sam-
pled during this survey, 319 samples were from localities situated in 
the sub-equatorial climatic region and 233 from the wet Sudanese 
climatic region (Atacorian region). High densities of An. funestus  
were recorded in Kpome (243 An. funestus) and Tanongou  
(229 An. funestus), localities from the sub-equatorial climatic region 
and the wet Sudanese climatic region, respectively (Figure 1).

Seasonal variations of An. funestus density in the northern 
(Tanongou) and the southern (Kpome) localities of Benin
Generated data from Kpome during the four monitored seasons 
revealed a higher An. funestus density per room (m/r) during the 
transition period from dry to rainy season (3 m/r). The lowest 
number of An. funestus (0.2 m/r) was recorded during rainy sea-
son. Densities of 1 and 2.3 m/r were documented during the transi-
tion from rainy to dry season and the dry season, respectively. A  
similar trend was observed in Tanongou with a higher density of  
An. funestus recorded during the transition from dry to rainy season 
(1.3 m/r), followed by the dry season with a density of 0.4 m/r, the 
transition from rainy to dry season and the rainy season had densities 
of 0.2 and 0.1 m/r, respectively. Comparative analysis of An. funes-
tus densities at Kpome and Tanongou revealed a relatively higher  
rate of An. funestus mosquitoes per room at Kpome throughout all 
the four identified seasons compared to Tanongou (Figure 2).

Distribution of members of An. funestus group across 
Benin
PCR species detection of the 552 morphologically identified  
An. funestus individuals revealed a predominance of An. funes-
tus s.s. in the two climatic regions where An. funestus was  
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Figure 2. Seasonal distribution of Anopheles funestus (densities per room) in Kpome and Tanongou estimated from mosquito samples 
collected between December 2014 and January 2016.

found in Benin. In the wet Sudanese climatic region, and more  
specifically in Tanongou, An. funestus s.s. was found in sympatry 
with its sister species An. leesoni. Out of the 229 An. funestus s.l. 
aspirated indoors at Tanongou, 178 were An. funestus s.s. and 51 were  
An. leesoni. In contrast, in the southern locality of Kpome where 
the highest density of An. funestus was recorded (243 An. funes-
tus s.l.), as well as Doukonta and Pahou, no other member of the  
group apart from An. funestus s.s. was found (Table 1).

Plasmodium infection rate of identified members of  
An. funestus group
Taqman results (n=552) showed that An. funestus mosquitoes 
from the sub-equatorial climatic localities of the southern Benin 
were significantly infected with Plasmodium compared with 
those from the wet Sudanese localities of the northwestern Benin  
(Atacorian region) (P=0.0001). An. funestus from Kpome, Pahou 
and Doukonta in southern Benin had Plasmodium infection  
rates of 18.51, 15.78 and 13.33%, respectively. However, in  
northwestern Benin, only An. funestus s.s. from Tanongou 
was infected with Plasmodium with an infection rate of 5.62%  
(Table 2). Plasmodium infection was absent in all the 51  
An. leesoni specimens analysed during this course of research 
(Table 2).

Comparative insecticide susceptibility tests of An. funestus s.s. 
in the northern (Tanongou) and the southern (Doukonta) 
localities of Benin
Insecticide susceptibility tests of An. funestus s.s. from Doukonta, 
Pahou6 and Kpome7 in the South, and Tanongou in northern Benin 

were assessed. In total, 100 females each (F
1
 generated from F

0
 

oviposition: 75 oviposited out of 110 and 9 oviposited out of 15 
An. funestus s.s. from Tanongou and Doukonta respectively) of  
An. funestus s.s. from Doukonta were exposed to DDT and per-
methrin in 4 replicates (pools of 25 mosquitoes). Similarly, 100  
An. funestus s.s. from Tanongou were exposed to permethrin and 
DDT in 5 replicates (average pool of 20 mosquitoes). Results 
revealed low mortalities to DDT (8±0.5%) and permethrin 
(11±0.5%) for An. funestus s.s. from Doukonta, whereas the Tanon-
gou population had higher mortality rates to DDT (90±3.18%) and 
permethrin (100%). This shows that there is a higher resistance  
in Doukonta compared to Tanongou (Figure 3). Similarly, high 
resistance levels have been previously documented in southern 
localities of Pahou and Kpome6,7.

Screening of L119F- GSTe2 mutation in a wild population 
of Anopheles funestus from Benin
Genotyping of the L119F-Gste2 mutation in wild An. funestus 
population from each of the selected locations revealed the pres-
ence of the resistant 119F allele at a high frequency: 96% in 
Kpome7, 83.2% in Doukonta (southern Benin), while in Tanon-
gou (North Benin), 35% mutant allelic frequency was recorded. 
No susceptible allele (SS) was observed either in Kpome or  
Doukonta mosquitoes, showing that the 119F gene is close to fixa-
tion in the An. funestus populations of these two locations in the 
southern Benin. A significant difference (P≤0.0001) was observed 
between the 119F allelic frequency recorded in Kpome and  
Doukonta, where a high resistance to DDT was observed compared 
to Tanongou (Figure 4).
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Table 1. Distribution of members of Anopheles funestus group collected 
from December 2014 to January 2016 in the North-South Benin.

Localities An. funestus s.l. subjected 
to molecular speciation An. funestus s.s. An. leesoni

Doukonta 15 15 0

Zoundji 3 3 0

Zougueme 1 1 0

Kouforpissiga 3 3 0

Cobly centre 1 1 0

Pahou 57 57 0

Tanongou 229 178 51

Kpome 243 243 0

Total 552 501 51

Table 2. Plasmodium infection rate of members of Anopheles funestus group 
collected from December 2014 to January 2016 in different localities of 
Benin.

Locality Species Mosquito 
analyzed

Total 
infected

Plasmodium 
infection rate (%)

Kpome An. funestus s.s. 243 45 18.51

Pahou An. funestus s.s. 57 9 15,78

Doukonta An. funestus s.s. 15 2 13.33

Cobly An. funestus s.s. 1 0 0

Koufforpissiga An. funestus s.s. 3 0 0

Zoundji An. funestus s.s. 3 0 0

Zoungueme An. funestus s.s. 1 0 0

Tanongou
An. funestus s.s. 178 10 5.62

An. leesoni 51 0 0

Total 552 66

Discussion
This research was designed to map the distribution of An. funes-
tus in Benin and compare the insecticide resistance profile of this 
malaria vector in the North-South transect, as well as their infec-
tion rates with Plasmodium species, for improved knowledge on 
this malaria vector and enhanced performances of current malaria 
control tools.

Distribution of An. funestus and its implication in malaria 
transmission in the various geo-climatic settings of Benin
An. funestus was mainly found in the southern and the northwestern 
localities of Benin in this study. In these two geo-climatic regions, 
there seem to be a high tendency of this species to colonize the western 
areas of the country (north and southwestern). The relatively 
high presence of this vector in the western part of Benin could 
be explained by the humidity, relatively low temperatures associ-
ated with the hilly landscape, and the presence of rivers and streams  
covered with vegetation35. This shows that this species prefers more 

permanent water bodies with vegetation usually found along riv-
ers, streams and lakes36, whereas An. gambiae tends to oviposit in 
temporary breeding sites, such as puddles and animal foot prints37. 
Very little or no population of An. funestus was found in the dry  
Sudanese climatic region of northeastern Benin. The low pres-
ence of this mosquito species in this dry hot region (low rain falls 
and temperature reaching 45°C during dry seasons) is either due 
to the period of sampling or the low presence of permanent fresh 
water bodies covered with vegetation coupled with dryness of the 
region38.

The density of An. funestus species collected indoor in this research 
further confirms their endophilic behavior39. Two species of the  
An. funestus group were identified during this study: An. funestus s.s.  
and An. leesoni. Contrary to An. funestus s.s., there was no trace 
of Plasmodium DNA in the 51 samples of An. leesoni analyzed. 
This result confirms the low/no implication of An. leesoni in the 
transmission of malaria, as previously documented14,39, which 
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Figure 3. Insecticide resistance profiles of Anopheles funestus populations in Kpome (South Benin), Doukonta (South Benin) and 
Tanongou (North Benin). Error bar represents standard deviation of the mean.

Figure 4. Allelic frequency of the L119F-GSTe2 mutation in wild Anopheles funestus populations (F0) from Kpome (South Benin), 
Doukonta (South Benin) and Tanongou (North Benin). f(S) represents frequency of  the susceptible allele and f(R) represents the frequency 
of the resistant allele in the population.
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is notable in West Africa as this species is known to be highly 
zoophilic. While placing a low epidemiological interest on An. 
leesoni, this study further highlights the need for a high focus on  
An. funestus s.s. for improved control of malaria in Benin7. 
Recorded infection rates of An. funestus were more than three times 
higher in screened localities of southern localities (Kpome, Pahou,  
Doukonta) compared to the North (Tanongou), suggesting a higher 
implication of An. funestus in malaria transmission in the south-
ern part of the country where its density is also high. The high  
Plasmodium infection rates observed in southern Benin are simi-
lar to some infection rates documented in several African coun-
tries in this species; Plasmodium falciparum infection rates of 2211  
and 27%12 have been found in An. funestus populations of 
South Africa. In countries from the western part of Africa, a  
mean rate of infectivity between 3 and 15% has been observed, 
including in Burkina Faso14,40 and recently in Ghana41. In Burkina 
Faso, Dabire et al.40 documented the presence of Plasmodium in  
An. funestus (20% infection rate) from Lena during the month 
of August 2000. In Benin, two studies recently conducted in  
southern localities revealed Plasmodium infection rates of  
13.6 and 18.27% in An. funestus7,42. This study has shown a  
similar trend in the densities of An. funestus in both screened  
ecological zones throughout the year. High densities of  
An. funestus mosquitoes were recorded during the transition  
from dry to rainy season followed by the dry season, then the  
transition from the rainy to dry season and finally the rainy  
season, where the least density of An. funestus were recorded.  
The involvement of An. funestus in the transmission of  
malaria during dry seasons was also documented in Ghana43, 
Nigeria15, Burkina Faso14,40, and more recently in southern Benin44.

Comparative insecticides susceptibility tests of An. 
funestus s.s. from southern (Doukonta) and northern 
(Tanongou) localities of Benin
Comparative analysis of insecticide resistance profiles in An. funes-
tus populations from Doukonta (southern Benin) and Tanongou 
(northern Benin) reveals that An. funestus s.s. from Doukonta are 
relatively more resistant to DDT and permethrin (mortality rates 
of 8±0.5 and 11±0.5%, respectively) than those from Tanongou, 
where only a moderate resistance was observed to DDT (mortality 
rate of 90±3.18%) and a full susceptibility to permethrin (100%). 
High resistance to DDT and permethrin had previously been 
reported in populations of An. funestus from two other localities 
of southern Benin, Pahou and Kpome6,7. In addition to the use of 
agricultural insecticides in both the northern and southern surveyed 
sites, the high insecticide resistance observed in the South could be 
associated with environmental factors, such as urbanization, which 
increases the level of xenobiotics (pollution) in Anopheles breeding 
sites and could favor the selection of cross resistance to permeth-
rin and DDT in southern Benin compared to northwestern Benin 
with less urbanization and pollution45. Recorded resistance profiles 
could also be associated with a relatively high flow of genes among 
An. funestus populations in southern Benin compared to the North, 
particularly if there are some barriers to gene flow, which needs 
to be investigated further. Other factors of resistance selection, 
such as the relatively high use of ITNs/IRS (use of public health  
insecticides) in the southern Benin compared to the North, might 
have also contributed to observed high resistance profile of  
mosquitoes6,46–50. Similar observations have been documented on 

An. gambiae s.l. in the North and South of Benin where increased 
pyrethroid resistance is also prevalent in An. gambiae s.l. species  
in South Benin51–53 than in the North, mirroring the pattern  
that was observed here for An. funestus. Resistance to DDT  
and permethrin is also widely distributed in An. gambiae in 
Benin4,54.

Distribution of L119F-GSTe2 mutation in An. funestus 
populations in Benin
The high frequency of the 119F-GSTe2 resistant allele in Kpome 
and Doukonta where high phenotypic resistance to DDT was also 
observed; both results suggest that this mutation plays an important 
role in DDT resistance in West Africa, as previously documented30. 
Indeed, consistent frequencies of this resistance allele were also 
recorded in other DDT resistant populations in Central and West 
Africa notably in Cameroon (52%), Ghana (44%) and Burkina 
Faso (25%) in accordance with the previously reported prevalence 
of DDT resistance in these countries27–29. The resistant 119F allele 
was detected in An. funestus populations from Tanongou, but with 
a relatively low frequency (35%), reflecting the moderate level of 
DDT resistance recorded. This result is in line with the detection 
of low frequencies of this resistant allele in the eastern African  
An. funestus of Uganda (20.4%) and Kenya (7.8%), which is associ-
ated with a moderate level of DDT phenotypic resistance observed 
in this region19,26. However, this observation is different in southern  
Africa where this mutation is completely absent despite recent 
reports of DDT resistance25, suggesting that DDT resistance 
in southern Africa is driven by a different mechanism to that 
observed in West and Central Africa. These heterogeneities in 
L119F frequencies suggest that there are different mechanisms 
responsible for the DDT resistance in An. funestus populations 
across Africa.

Conclusion
This study has generated key relevant information on the bionom-
ics of An. funestus in Benin, including its seasonal distribution in a 
South-North transect, its Plasmodium infection rate and its resist-
ance profiles to permethrin and DDT in the southern and northern  
ecological zones. The contrasting profiles observed between  
southern and northern populations of An. funestus were evident in 
the present study in terms of density, contribution to malaria trans-
mission and resistance to insecticides. The factors behind these  
differences need further investigation. Overall, the high density  
of An. funestus in the south and northwestern Benin coupled 
with the consistent high Plasmodium infection level of this  
Anopheles species and its high resistance to insecticides in the  
South strengthens the need for more research on this species  
for improved performances of malaria control programs in  
Benin.
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In a context marked by widespread insecticide resistance in different anopheles populations, knowledge
of the bionomic of malaria vector such as   and measured insecticide susceptibilities areAn. funestus
prerequisite for effective vector control. Indeed,  .   is one of the key malaria vectors in AfricaAn funestus
and in this respect deserves more attention. The paper by Djouaka   goes in the same direction. Thiset al.
is a solid manuscript and generally very clearly written; the Background is very clearly focused, and the
Discussion and conclusions warranted by the data. In this, I strongly encourage the publication of this
manuscript. My minor comments are below: 

Methods

Plasmodium infection rate of  populations from surveyed localitiesAn. funestus
I recommend the authors to give the different sequences of the primers used (P. ovale, vivax, malariae
and  ).falciparum

Insecticides susceptibility
I suggest the authors to develop this part by giving any information about the number of ovipositing
females, the number of tested mosquitoes per molecules (DDT and permethrin) and the number of
replicates, the origin of impregnated papers (from Vector Control Research Unit, University Sains
Malaysia, Penang, Malaysia??), condition of test (relative humidity and temperature) and insectary
conditions.
 
Data analysis
In this section, it should be mentioned the used statistical tests

Results
Specify the test used in all results

Plasmodium infection rate of identified members of An. funestus group:  (P=0.0001) what
test was used? Fisher’s exact test, chi-squared test? or Pearson test?....
Same thing to the   (P 0.001).Screening of L119F-GSTe2….section

Tables and figures
In all  , for clarity please add the collection dates in the titleTables and figures
Figure 3: The data represent mortality mate? means? medians? with 95 % confidence intervals?
Please make clear.
Figure 4: What does f (S) and f(R) represent? Please specify in the title.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 21 Feb 2017
, International institute of Tropical Agriculture, BeninRousseau Djouaka

Memo : How we addressed comments from Reviewer 2
 
Methods
 

: Comment 1 Plasmodium infection rate of An. funestus populations from surveyed localities: I
recommend the authors to give the different sequences of the primers used (P. ovale, vivax,
malariae and falciparum).
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malariae and falciparum).
 
For this analysis as described in the methodology, primers and probes were used: Forward (F),
PlasF (5'-GCTTAGTTACGATTAATAGGAGTAGCTTG-3') and reverse (R), PlasR (5'-
GAAAATCTAAGAATTTCACCTCTGACA-3') primers. Specific probes for  speciesplasmodium 
detection: 5'-TCTGAATACGAATGTC-3' labelled with FAM for   detection andP. falciparum
5'-CTGAATACAAATGCC-3' labelled with HEX for or  and   detection P. ovale  P. vivax P. malariae
were also used.
 
Insecticides susceptibility
 

 Comment 2: I suggest the authors to develop this part by giving information about:
 

the number of ovipositing females

For Tanongou, 75   oviposited out of 110 that were subjected to forced-eggAnopheles funestus s. s.
laying technique while for Doukonta, 9 mosquitoes oviposited out of 15 that were subjected to
forced-egg laying technique.
 

the number of tested mosquitoes per molecules (DDT and permethrin) and the number of
replicates

 
100  were tested for each insecticide with 4 and 5 replicates in DoukontaAnopheles funestus s. s. 
and Tanongou respectively.
 

the origin of impregnated papers (from Vector Control Research Unit, University Sains
Malaysia, Penang, Malaysia??)

Impregnated papers were purchased from Vector Biology Department, Liverpool School of
Tropical Medicine, UK.
 

condition of test (relative humidity and temperature) and insectary conditions.
 
Insectary and Bioassay room were at a temperature of 25-27°C and relative humidity of 80±5%.
 
 
 
Data analysis and Results
 
Comments 3 & 4:
 

 In this section, it should be mentioned the used statistical tests.3.
Plasmodium infection rate of identified members of An. funestus group:  (P=0.0001) what test4. 

was used? Fisher’s exact test, chi-squared test? or Pearson test?....
Same thing to the Screening of L119F-GSTe2….section (P 0.001).
 
 
Fisher’s exact test was used to determine the significant levels (P-values) of the Plasmodium 
infection rates and L119F-GSTe2 allelic frequency of   in the South comparedAnopheles funestus

to the North of Benin.
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to the North of Benin.
 
Figures and Tables
 
Comment 5: 
 

In all , for clarity please add the collection dates in the titleTables and figures

This comment has been addressed in the latest version of the article. See titles of figures and
tables.
 

: The data represent mortality rate? means? medians? with 95 % confidenceFigure 3
intervals? Please make clear.

 
The data on Figure 3 represents the mortality rates of mosquitoes subjected to insecticide
susceptibility tests and error bars represent the standard deviation of the mean.
 

: What does f(S) and f(R) represent? Please specify in the title.Figure 4
 

: Allelic frequency of the L119F-GSTe2 mutation in wild  populationsFigure 4 Anopheles funestus 
(F0) from Kpome (South Benin), Doukonta (South Benin) and Tanongou (North Benin). f(S)
represents frequency of susceptible allele and f(R) represents frequency of resistant allele in the
species population.

 We declare no competing interestCompeting Interests:

 19 December 2016Referee Report

doi:10.21956/wellcomeopenres.11002.r18496

 Mouhamadou S. Chouaibou
Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Cote d'Ivoire

The research question is clearly defined and the study design appropriate.

The method section provides sufficient details to allow the repeatability of the work. In overall, the paper is
scientifically good and provide relevant information on   bionomy in Benin. However,Anopheles funestus
there is one minor change required; In the Methods section, susceptibility test paragraph, line 14, the
author states that : ‘The wild population of  .   was exposed to nontreated insecticide papers asAn funestus
a control  ’. The author shoulddue to lack of susceptible strains of  , (  FANG)An. funestus An. funestus
remove the underlined sentence as from WHO guideline, it is not required to use the susceptible strain as
control.

Comment/question

Why has the author limited only to the determination of seasonal variation and infection rate?

The author could have estimated passive aggression by dividing the number of mosquitoes collected per
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The author could have estimated passive aggression by dividing the number of mosquitoes collected per
room by the number of sleepers in the room and then estimate the EIR.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 19 Dec 2016
, International institute of Tropical Agriculture, BeninRousseau Djouaka

In the Methods section, susceptibility test paragraph, line 14, the author states that Comment 1: 
‘The wild population of  was exposed to non treated insecticide papers as a control An. funestus due

’to lack of susceptible strains of  , (  FANG)An. funestus An. funestus
 
The comment has been considered; the underlined statement has been removed in the PDF
version in the new version of this manuscript.
 

: Why has the author limited only to the determination of seasonal variation andComment 2
infection rate?
The author could have estimated passive aggression by dividing the number of mosquitoes
collected per room by the number of sleepers in the room and then estimate the EIR.
 
These parameters were initially considered at the beginning of this study (the number of people
who slept in the room). At some point, we noticed some inconsistencies in the number of sleepers
provided by households. It was a bit difficult to verify this discrepancy because our mosquito
sampling was done in the morning when most sleepers have left the rooms (morning collections).
The best option was actually to use human landing collections for more accuracy of EIR but
unfortunately this was not part of our study design hence, we limited our data to mosquito densities
per room and plasmodium infection rate. 

 We disclose no competing interest.Competing Interests:
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